

Single electrons from semileptonic charm meson decays in pp collisions at 200 GeV

Xinhua Li (UC Riverside)

for the PHENIX Collaboration

2003 DNP Fall Meeting Oct. 30 – Nov. 1, 2003 Tucson, Arizona

Why Charm in p+p Collisions @ RHIC

Charm production mainly through gluon-gluon fusion and quark-antiquark annihilation. Quark-gluon scattering also involved at higher order. Charm measurement intrinsically interesting.

Reference to understand:

- charm production in heavy ion collisions probe of initial state and state of nuclear medium
- J/ Ψ suppression in heavy ion collision one of signature of QGP

PHENIX in Run2 p+p at 200 GeV

This analysis uses:

15M MiniBias events in |Z_{vertex}| < 25 cm

465M sampled events by Level1 Trigger

For electron measurements

■ BBC: vertex position, trigger

DC, PC1: tracking

momentum measurement

RICH: electron ID

PC3: charge veto for photon ID

■ EMCal: electron ID

energy measurement

How to detect Charm

Direct method:

Reconstruction of D-meson

(e.g. $D^0 \rightarrow K^- \pi^+$).

Very challenging without

Vertex.

Indirect method: Measure leptons from semileptonic decay of charm mesons. Used at PHENIX.

Challenging at PHENIX

Charm e/ $\pi \sim 3-4x10^{-4}$ expected in p+p @ 200 GeV

Backgounds

$$\pi^{0} \rightarrow e^{+}e^{-} \gamma$$

$$\pi^{0} \rightarrow \gamma \gamma$$

$$\downarrow \qquad \qquad e^{+}e^{-}$$

Dalitz: Branching Fraction=1.2%

Conversion: comparable to Dalitz

$$\eta \rightarrow e^{+}e^{-}\gamma$$

$$\eta \rightarrow \gamma \gamma$$

$$e^{+}e^{-}$$

 e^+e^- 20% of π^0 contribution at high pt

Others small, e.g. K, ρ , ω , η ', ϕ decays

Three approaches at PHENIX

Photon converter method: requires good statistics of dedicated converter run

Cocktail method: needs full knowledge of π^0 spectrum GC.010 Sergey Butsyk

(e, γ) coincidence method: π^0 yield not necessary this talk

Way to charm signal

Simulate π^0 decays according to PDG

$$Br(\pi^0 -> \gamma \gamma) = 98.8\%$$

$$Br(\pi^0 -> \gamma e^+ e^-) = 1.2\%$$

Reconstruct π^0 by (e, γ) coincidence

Calculate R=coincidence / electron inclusive

non- π^0 related/electron inclusive

= 1 - R(data)/R(simulation)

Simulation input

π⁰ is well
measured at
PHENIX for p+p
@ 200 GeV
hep-ex/0304038

absolutenormalization(A) is not usedin simulation

(e, γ) coincidence

internal/external γ conversion: $\pi^0 \rightarrow \gamma e^+e^-$

Reconstruct π^0 from (e,γ) coincidence η also possible in high statistics

Rate of (e,γ) coincidence

coincidence increases with pt due to less bending in field

no coincidence from charm meson decays data < simulation $at \ high \ p_t$

no charm expected to be seen at low p_t data=simulation

Outlook

New method to extract electron signal from Charm/Bottom meson decays

Robust: require knowledge only of $\pi^{0/}\eta$ slope absolute normalization not necessary

Will finalize PHENIX Run2 pp data analysis

Applicable to dAu, AuAu data analysis